Machine Learning for Beam Based Mobility Optimization in NR
نویسندگان
چکیده
One option for enabling mobility between 5G nodes is to use a set of area-fixed reference beams in the downlink direction from each node. To save power these reference beams should be turned on only on demand, i.e. only if a mobile needs it. An User Equipment (UE) moving out of a beam’s coverage will require a switch from one beam to another, preferably without having to turn on all possible beams to find out which one is the best. This thesis investigates how to transform the beam selection problem into a format suitable for machine learning and how good such solutions are compared to baseline models. The baseline models considered were beam overlap and average Reference Signal Received Power (RSRP), both building beam-to-beam maps. Emphasis in the thesis was on handovers between nodes and finding the beam with the highest RSRP. Beam-hit-rate and RSRP-difference (selected minus best) were key performance indicators and were compared for different numbers of activated beams. The problem was modeled as a Multiple Output Regression (MOR) problem and as a Multi-Class Classification (MCC) problem. Both problems are possible to solve with the random forest model, which was the learning model of choice during this work. An Ericsson simulator was used to simulate and collect data from a seven-site scenario with 40 UEs. Primary features available were the current serving beam index and its RSRP. Additional features, like position and distance, were suggested, though many ended up being limited either by the simulated scenario or by the cost of acquiring the feature in a real-world scenario. Using primary features only, learned models’ performance were equal to or worse than the baseline models’ performance. Adding distance improved the performance considerably, beating the baseline models, but still leaving room for more improvements.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017